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Abstract
The critical behavior of a source-enhanced coagulating system, where the
coagulation efficiency grows with the masses of colliding particles g and l as
K(g, l) = κgl, is studied. In addition to the continuously acting steady-state
source of monomers of productivity I, an instantaneous sink that removes the
particles with masses exceeding G is introduced which allows one to define
the gel as a deposit of particles with masses between G + 1 and 2G. This
system displays a critical behavior (the sol–gel transition) as G −→ ∞. The
exact post-critical particle mass spectrum is shown to be cg = Ag−5/2 egξ(t)/G.
The function ξ(t) drops down to a constant during a very short time of order
1/

√
G (in the system of units I = κ = 1). During this time, the sol mass

concentration M(t) jumps down from M = π/2 to M = √
2.

PACS numbers: 79.60.Bm, 42.65.Lm, 03.65.−w, 52.90.+z

In this communication we consider a system of particles that move chaotically, collide and
on colliding coalesce producing a daughter particle with the mass equal to the sum of masses
of parent particles. Such a process is commonly referred to as coagulation. This process has
received much attention because of its great scientific and practical importance (see Leyvraz
(2003) and extensive citations therein). The kinetics of coagulation is described by the
Smoluchowski equation which allows one to restore the particle mass spectrum at time t, once
the initial conditions are known.

Less studied are the source-enhanced coagulating systems, where a spatially uniform
external source produces the smallest particles which then grow by coagulation. Such systems
are suspected to reach steady-state regimes under some special conditions imposed on the
coagulation kernel. These conditions were formulated in a number of works (see, e.g.,
Lushnikov and Kulmala (2002), Connaughton et al (2004)). Moreover, the steady-state
regimes can be realized in gelling systems, where the coagulation process leads to the formation
of a giant cluster (gel) during a finite interval of time. Although the steady-state regimes in
coagulating systems are already known more than three decades (Lushnikov and Smirnov 1975,
1977, 2002), nobody noticed that the total mass concentration in gelling systems experiences
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a finite jump at the critical point. This communication attempts to explain what is going on in
the gelling systems right after the moment when the gel begins to form.

Let us consider a source-enhanced coagulating system. We assume that before the initial
moment t = 0 the system was empty and then at t > 0 a source of monomers is turned on.
The monomers begin to coalesce forming dimers, trimers, etc. When a particle reaches the
mass G + 1 or more, it is considered to deposit and does not participate in the coagulation
process furthermore. This is the truncated model of coagulation introduced very long ago
by Lushnikov and Piskunov (1982, 1983) (see also Lushnikov (2006a)) and recently applied
by me (Lushnikov 2007a, 2007b) for studying the post-critical behavior of free (no source)
coagulating systems.

This work focuses on the critical behavior of the source-enhanced coagulating system
with the product coagulation kernel K(g, l) = κgl. This kernel won great popularity in the
scientific community dealing with the coagulation processes not only because it describes
some realistic processes such as polymerization (Ziff and Stell 1980, Hendrics et al 1983),
evolution of random graphs (Ben-Naim and Krapivsky 2004, Lushnikov 2005), formation of
aerogels (Lushnikov et al 1990), but also because, most important, this kernel allows for the
exact analysis of the coagulation kinetics.

Fairly recently I found the exact solution of the respective coagulation equation for the
scenario with the active gel, where after the critical time a giant superparticle formed that
actively participated in the coagulation process by eating its smaller partners from the sol
fraction (Lushnikov 2006b). In this communication I showed that the critical time is tc = π/2
and the total mass concentration is also M(tc) = π/2 (in what follows the system of units
I = κ = 1 is used, I and κ being the source productivity and the dimension carrier of the
coagulation kernel, respectively).

There is another scenario, where the gel is passive (see Leyvraz 2003). Of course, this
scenario can be realized in source-enhanced systems. I knew about this scenario, but avoided
it with silence in my just cited paper. The point is that the critical mass concentration M(tc)

reaches the value π/2, whereas the most plausible candidate for the post-gel sol steady-state
spectrum has a lower total mass (Mgel = √

2). At that time, I did not know how to reconcile
these two facts. Now I found the way out.

Our starting point is the truncated Smoluchowski’s equation describing the coagulation
kinetics of particles whose masses are limited with a maximal (cutoff) mass G. This truncated
model used here describes the coagulation process in the system with a source of monomers
and a sink that instantly removes the particles with the masses exceeding G. The Smoluchowski
equation for the number concentrations cg(t) of actively coagulating particles (referred
hereafter to as sol) comprising exactly g (g � G) monomers at time t looks as follows:

dcg(t)

dt
= δg1 +

1

2

g−1∑
l=1

(g − l)lcg−l (t)cl(t) − gcg(t)M(t). (1)

Here,

M(t) =
G∑

l=1

lcl(t) (2)

is the total particle mass concentration. The first term on the right-hand side of equation (1)
is the source of monomers (δgl is the Kroneker delta), the second term describes the gain of
g-mers due to the reaction (g − l) + (l) −→ (g) and the third term is responsible for g-mer
losses due to their sticking to all other particles. This third term contains the cutoff mass G
(G � 1), i.e. we assume that all particles with masses G+ 1,G+ 2, . . . , 2G do not participate
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in the coagulation process and form a passive deposit (gel). We introduce its spectrum and
denote the concentrations of deposited particles as c+

g(t). It is clear that only the gain term
contributes to the rate of change to c+

g :

dc+
g(t)

dt
= 1

2

G∑
l=g−G

(g − l)lcg−l (t)cl(t). (3)

The initial condition to equation (1) is chosen in the form

cg(t = 0) = 0, (4)

i.e. the coagulation process starts with an empty volume.
The pre-gelation stage does not depend on the gelation scenario; so we can use the results

of my paper (Lushnikov 2006b).
In the post-gelation stage, we try to find the solution in the form

cg(t) = c̃g egξ(t)/G, t > tc, (5)

where c̃g are the steady-state concentrations c̃g = cg(t = ∞). These concentrations meet the
equation

δg1 +
1

2

g−1∑
l=1

(g − l)lc̃g−l c̃l − gc̃gM̃ = 0 (6)

with

M̃ =
G∑

l=1

lc̃l . (7)

This equation is readily solved. To this end, we introduce the generating function

F(z) =
∞∑

g=1

gc̃gz
g. (8)

From equation (6), we have

F 2 − 2M̃F + 2z = 0 (9)

or

F(z) = M̃ −
√

M̃2 − 2z. (10)

We thus find

c̃g = M̃g−1rg

(
2

M̃2

)g

, (11)

where

rg = (2g − 3)!!

2gg!
= (2g − 3)!

22g−2(g − 2)!g!
(12)

are the coefficients of the Taylor expansion of the function 1 − √
1 − z. At large g, we have

rg ≈ 1

2
√

πg3
. (13)

From equations (7) and (11), we find the equation for determining M:

1 =
G∑

g=1

rg

(
2

M̃2

)g

. (14)
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Figure 1. The dependence of ξ(τ ) on the reduced time τ = 2
√

πG(t − tc). The dotted line shows
the limiting value ξ(∞) = ξ̃ .

We look for the solution to this equation in the form M2 = 2e−ξ̃ /G. The following chain of
equalities solves the problem of finding ξ̃ :

1 =
G∑

g=1

rg

(
2

M̃2

)g

−
G∑

g=1

rg +
G∑

g=1

rg ≈ 1

2
√

πG

∫ 1

0

eξ̃ x − 1

x3/2
dx +

G∑
g=1

rg

= 1 +
1

2
√

πG

(∫ 1

0

eξ̃ x − 1

x3/2
dx − 2

)
.

We thus come to the equation for ξ̃ :∫ 1

0

eξ̃ x − 1

x3/2
dx = 2, (15)

or on integrating twice by parts

(4ξ̃ − 2) eξ̃ − 4ξ̃ 2
∫ 1

0

√
x eξ̃ x dx = 0. (16)

In a different context, this equation already appeared in my works (see Lushnikov (2007a,
2007b) and references therein). Its solution is ξ̃ = 0.854 033 292.

Now let us return to the transient period. Substituting equation (5) to equation (1) gives

g

G
ξ̇ c̃g = δg1 e−ξ(t)/G +

1

2

g−1∑
l=1

(g − l)lc̃g−l c̃l − gc̃gM(t). (17)

As G � 1, we approximate e−ξ(t)/G ≈ 1 and then use equation (6) to obtain

G−1ξ̇ + M(t) − M̃ = 0. (18)

We finally come to the differential equation for ξ(t):

ξ̇ +
G1/2

2
√

π

∫ 1

0

eξx − eξ̃ x

x3/2
dx = 0 (19)
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Figure 2. The dependence of the total mass concentration M(τ) of sol on the reduced time is
τ = 2

√
πG(t − tc).

with the initial condition ξ(0) = ξ0, where ξ0 is determined from the equation

1

2
√

πG

∫ 1

0

eξ0x − eξ̃ x

x3/2
dx = M(tc) − M̃ = π

2
−

√
2. (20)

Equation (19) shows that ξ(t) reaches its steady state during a very short time of order
tc/

√
G. On the other hand, as follows from equation (20) the value of ξ0 is large (of order

ln G), but still much less than G. Equation (19) was solved numerically. The result is presented
in figure 1. This solution was then used for calculating the total mass concentration of the sol
fraction (see figure 2).

The main result of this study is the resolution of the paradox with the sharp jump between
the sol and gel stages, where the total mass concentration of the sol state sharply drops down
from the value M(tc) = π/2 to M̃ = √

2. Now it has become clear that this jump has a very
short finite duration.

As shown in my paper (Lushnikov 2006b), the sol spectrum becomes algebraic (cg ∝
g−5/2) as the time approaches the critical value. After this two scenarios can be realized:
either an active gel forms and the sol spectrum shrinks after the gel point or the spectrum
remains algebraic and even modulated by the growing (with g) exponent. It is remarkable that
the mass dependence of the steady-state spectrum coincides with that found for the case of
free coagulation with passive gelation (see Lushnikov (2007a, 2007b) and references therein).

The mass of the gel fraction can be found from the mass balance, Mgel = t −M(t). After
the short transient period, all mass produced by the source transfers to the gel whose mass
grows with time linearly. The gel spectrum is readily found from equation (3). Its integration,
as in the case of free coagulation, gives (see Lushnikov 2007a, 2007b)

c+
g(∞) = exp[ξ(1 + s)]

πG2

1 − s

(1 + s)2
√

s
(t − tc). (21)

Here, s = (g − G)/G.
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